Проекции точек находящихся на плоскостях проекций.  Начертательная геометрия

Положение точки в пространстве может быть задано двумя её ортогональными проекциями, например, горизонтальной и фронтальной, фронтальной и профильной. Сочетание любых двух ортогональных проекций позволяет узнать значение всех координат точки, построить третью проекцию, определить октант, в котором она находится. Рассмотрим несколько типичных задач из курса начертательной геометрии.

По заданному комплексному чертежу точек A и B необходимо:

Определим сначала координаты т. A, которые можно записать в виде A (x, y, z). Горизонтальная проекция т. A – точка A", имеющая координаты x, y. Проведем из т. A" перпендикуляры к осям x, y и найдем соответственно A х, A у. Координата х для т. A равна длине отрезка A х O со знаком плюс, так как A х лежит в области положительных значений оси х. С учетом масштаба чертежа находим х = 10. Координата у равна длине отрезка A у O со знаком минус, так как т. A у лежит в области отрицательных значений оси у. С учетом масштаба чертежа у = –30. Фронтальная проекция т. A – т. A"" имеет координаты х и z. Опустим перпендикуляр из A"" на ось z и найдем A z . Координата z точки A равна длине отрезка A z O со знаком минус, так как A z лежит в области отрицательных значений оси z. С учетом масштаба чертежа z = –10. Таким образом, координаты т. A (10, –30, –10).

Координаты т. B можно записать в виде B (x, y, z). Рассмотрим горизонтальную проекцию точки B – т. В". Так как она лежит на оси х, то B x = B" и координата B у = 0. Абсцисса x точки B равна длине отрезка B х O со знаком плюс. С учетом масштаба чертежа x = 30. Фронтальная проекция точки B – т. B˝ имеет координаты х, z. Проведем перпендикуляр из B"" к оси z, таким образом найдем B z . Аппликата z точки B равна длине отрезка B z O со знаком минус, так как B z лежит в области отрицательных значений оси z. С учетом масштаба чертежа определим значение z = –20. Таким образом, координаты B (30, 0, -20). Все необходимые построения представлены на рисунке ниже.

Построение проекций точек

Точки A и B в плоскости П 3 имеют следующие координаты: A""" (y, z); B""" (y, z). При этом A"" и A""" лежат одном перпендикуляре к оси z, так как координата z у них общая. Точно также на общем перпендикуляре к оси z лежат B"" и B""". Чтобы найти профильную проекцию т. A, отложим по оси у значение соответствующей координаты, найденное ранее. На рисунке это сделано с помощью дуги окружности радиуса A у O. После этого проведем перпендикуляр из A у до пересечения с перпендикуляром, восстановленным из точки A"" к оси z. Точка пересечения этих двух перпендикуляров определяет положение A""".

Точка B""" лежит на оси z, так как ордината y этой точки равна нулю. Для нахождения профильной проекции т. B в данной задаче необходимо лишь провести перпендикуляр из B"" к оси z. Точка пересечении этого перпендикуляра с осью z есть B""".

Определение положения точек в пространстве

Наглядно представляя себе пространственный макет, составленный из плоскостей проекций П 1 , П 2 и П 3 , расположение октантов , а также порядок трансформации макета в эпюр, можно непосредственно определить, что т. A расположена в III октанте, а т. B лежит в плоскости П 2 .

Другим вариантом решения данной задачи является метод исключений. Например, координаты точки A (10, -30, -10). Положительная абсцисса x позволяет судить о том, что точка расположена в первых четырех октантах. Отрицательная ордината y говорит о том, что точка находится во втором или третьем октантах. Наконец, отрицательная аппликата z указывает на то, что т. A расположена в третьем октанте. Приведенные рассуждения наглядно иллюстрирует следующая таблица.

Октанты Знаки координат
x y z
1 + + +
2 + +
3 +
4 + +
5 + +
6 +
7
8 +

Координаты точки B (30, 0, -20). Поскольку ордината т. B равна нулю, эта точка расположена в плоскости проекций П 2 . Положительная абсцисса и отрицательная аппликата т. B указывают на то, что она расположена на границе третьего и четвертого октантов.

Построение наглядного изображения точек в системе плоскостей П 1 , П 2 , П 3

Используя фронтальную изометрическую проекцию, мы построили пространственный макет III октанта. Он представляет собой прямоугольный трехгранник, у которого гранями являются плоскости П 1 , П 2 , П 3 , а угол (-y0x) равен 45 º. В этой системе отрезки по осям x, y, z будут откладываться в натуральную величину без искажений.

Построение наглядного изображения т. A (10, -30, -10) начнем с её горизонтальной проекции A". Отложив по оси абсцисс и ординат соответствующие координаты, найдем точки A х и A у. Пересечение перпендикуляров, восстановленных из A х и A у соответственно к осям x и y определяет положение т. A". Отложив от A" параллельно оси z в сторону её отрицательных значений отрезок AA", длина которого равна 10, находим положение точки A.

Наглядное изображение т. B (30, 0, -20) строится аналогично – в плоскости П 2 по осям x и z нужно отложить соответствующие координаты. Пересечение перпендикуляров, восстановленных из B х и B z , определит положение точки B.

В этой статье мы найдем ответы на вопросы о том, как создать проекцию точки на плоскость и как определить координаты этой проекции. Опираться в теоретической части будем на понятие проецирования. Дадим определения терминам, сопроводим информацию иллюстрациями. Закрепим полученные знания при решении примеров.

Yandex.RTB R-A-339285-1

Проецирование, виды проецирования

Для удобства рассмотрения пространственных фигур используют чертежи с изображением этих фигур.

Определение 1

Проекция фигуры на плоскость – чертеж пространственной фигуры.

Очевидно, что для построения проекции существует ряд используемых правил.

Определение 2

Проецирование – процесс построения чертежа пространственной фигуры на плоскости с использованием правил построения.

Плоскость проекции - это плоскость, в которой строится изображение.

Использование тех или иных правил определяет тип проецирования: центральное или параллельное .

Частным случаем параллельного проецирования является перпендикулярное проецирование или ортогональное: в геометрии в основном используют именно его. По этой причине в речи само прилагательное «перпендикулярное» часто опускают: в геометрии говорят просто «проекция фигуры» и подразумевают под этим построение проекции методом перпендикулярного проецирования. В частных случаях, конечно, может быть оговорено иное.

Отметим тот факт, что проекция фигуры на плоскость по сути есть проекция всех точек этой фигуры. Поэтому, чтобы иметь возможность изучать пространственную фигуру на чертеже, необходимо получить базовый навык проецировать точку на плоскость. О чем и будем говорить ниже.

Напомним, что чаще всего в геометрии, говоря о проекции на плоскость, имеют в виду применение перпендикулярной проекции.

Произведем построения, которые дадут нам возможность получить определение проекции точки на плоскость.

Допустим, задано трехмерное пространство, а в нем - плоскость α и точка М 1 , не принадлежащая плоскости α . Начертим через заданную точку М 1 прямую а перпендикулярно заданной плоскости α . Точку пересечения прямой a и плоскости α обозначим как H 1 , она по построению будет служить основанием перпендикуляра, опущенного из точки М 1 на плоскость α .

В случае, если задана точка М 2 , принадлежащая заданной плоскости α , то М 2 будет служить проекцией самой себя на плоскость α .

Определение 3

– это либо сама точка (если она принадлежит заданной плоскости), либо основание перпендикуляра, опущенного из заданной точки на заданную плоскость.

Нахождение координат проекции точки на плоскость, примеры

Пускай в трехмерном пространстве заданы: прямоугольная система координат O x y z , плоскость α , точка М 1 (x 1 , y 1 , z 1) . Необходимо найти координаты проекции точки М 1 на заданную плоскость.

Решение очевидным образом следует из данного выше определения проекции точки на плоскость.

Обозначим проекцию точки М 1 на плоскость α как Н 1 . Согласно определению, H 1 является точкой пересечения данной плоскости α и прямой a , проведенной через точку М 1 (перпендикулярной плоскости). Т.е. необходимые нам координаты проекции точки М 1 – это координаты точки пересечения прямой a и плоскости α .

Таким образом, для нахождения координат проекции точки на плоскость необходимо:

Получить уравнение плоскости α (в случае, если оно не задано). Здесь вам поможет статья о видах уравнений плоскости;

Определить уравнение прямой a , проходящей через точку М 1 и перпендикулярной плоскости α (изучите тему об уравнении прямой, проходящей через заданную точку перпендикулярно к заданной плоскости);

Найти координаты точки пересечения прямой a и плоскости α (статья – нахождение координат точки пересечения плоскости и прямой). Полученные данные и будут являться нужными нам координатами проекции точки М 1 на плоскость α .

Рассмотрим теорию на практических примерах.

Пример 1

Определите координаты проекции точки М 1 (- 2 , 4 , 4) на плоскость 2 х – 3 y + z - 2 = 0 .

Решение

Как мы видим, уравнение плоскости нам задано, т.е. составлять его необходимости нет.

Запишем канонические уравнения прямой a , проходящей через точку М 1 и перпендикулярной заданной плоскости. В этих целях определим координаты направляющего вектора прямой a . Поскольку прямая а перпендикулярна заданной плоскости, то направляющий вектор прямой a – это нормальный вектор плоскости 2 х – 3 y + z - 2 = 0 . Таким образом, a → = (2 , - 3 , 1) – направляющий вектор прямой a .

Теперь составим канонические уравнения прямой в пространстве, проходящей через точку М 1 (- 2 , 4 , 4) и имеющей направляющий вектор a → = (2 , - 3 , 1) :

x + 2 2 = y - 4 - 3 = z - 4 1

Для нахождения искомых координат следующим шагом определим координаты точки пересечения прямой x + 2 2 = y - 4 - 3 = z - 4 1 и плоскости 2 х - 3 y + z - 2 = 0 . В этих целях переходим от канонических уравнений к уравнениям двух пересекающихся плоскостей:

x + 2 2 = y - 4 - 3 = z - 4 1 ⇔ - 3 · (x + 2) = 2 · (y - 4) 1 · (x + 2) = 2 · (z - 4) 1 · (y - 4) = - 3 · (z + 4) ⇔ 3 x + 2 y - 2 = 0 x - 2 z + 10 = 0

Составим систему уравнений:

3 x + 2 y - 2 = 0 x - 2 z + 10 = 0 2 x - 3 y + z - 2 = 0 ⇔ 3 x + 2 y = 2 x - 2 z = - 10 2 x - 3 y + z = 2

И решим ее, используя метод Крамера:

∆ = 3 2 0 1 0 - 2 2 - 3 1 = - 28 ∆ x = 2 2 0 - 10 0 - 2 2 - 3 1 = 0 ⇒ x = ∆ x ∆ = 0 - 28 = 0 ∆ y = 3 2 0 1 - 10 - 2 2 2 1 = - 28 ⇒ y = ∆ y ∆ = - 28 - 28 = 1 ∆ z = 3 2 2 1 0 - 10 2 - 3 2 = - 140 ⇒ z = ∆ z ∆ = - 140 - 28 = 5

Таким образом, искомые координаты заданной точки М 1 на заданную плоскость α будут: (0 , 1 , 5) .

Ответ: (0 , 1 , 5) .

Пример 2

В прямоугольной системе координат O x y z трехмерного пространства даны точки А (0 , 0 , 2) ; В (2 , - 1 , 0) ; С (4 , 1 , 1) и М 1 (-1, -2, 5). Необходимо найти координаты проекции М 1 на плоскость А В С

Решение

В первую очередь запишем уравнение плоскости, проходящей через три заданные точки:

x - 0 y - 0 z - 0 2 - 0 - 1 - 0 0 - 2 4 - 0 1 - 0 1 - 2 = 0 ⇔ x y z - 2 2 - 1 - 2 4 1 - 1 = 0 ⇔ ⇔ 3 x - 6 y + 6 z - 12 = 0 ⇔ x - 2 y + 2 z - 4 = 0

Запишем параметрические уравнения прямой a , которая будет проходить через точку М 1 перпендикулярно плоскости А В С. Плоскость х – 2 y + 2 z – 4 = 0 имеет нормальный вектор с координатами (1 , - 2 , 2) , т.е. вектор a → = (1 , - 2 , 2) – направляющий вектор прямой a .

Теперь, имея координаты точки прямой М 1 и координаты направляющего вектора этой прямой, запишем параметрические уравнения прямой в пространстве:

Затем определим координаты точки пересечения плоскости х – 2 y + 2 z – 4 = 0 и прямой

x = - 1 + λ y = - 2 - 2 · λ z = 5 + 2 · λ

Для этого в уравнение плоскости подставим:

x = - 1 + λ , y = - 2 - 2 · λ , z = 5 + 2 · λ

Теперь по параметрическим уравнениям x = - 1 + λ y = - 2 - 2 · λ z = 5 + 2 · λ найдем значения переменных x , y и z при λ = - 1: x = - 1 + (- 1) y = - 2 - 2 · (- 1) z = 5 + 2 · (- 1) ⇔ x = - 2 y = 0 z = 3

Таким образом, проекция точки М 1 на плоскость А В С будет иметь координаты (- 2 , 0 , 3) .

Ответ: (- 2 , 0 , 3) .

Отдельно остановимся на вопросе нахождения координат проекции точки на координатные плоскости и плоскости, которые параллельны координатным плоскостям.

Пусть задана точки М 1 (x 1 , y 1 , z 1) и координатные плоскости O x y , О x z и O y z . Координатами проекции этой точки на данные плоскости будут соответственно: (x 1 , y 1 , 0) , (x 1 , 0 , z 1) и (0 , y 1 , z 1) . Рассмотрим также плоскости, параллельные заданным координатным плоскостям:

C z + D = 0 ⇔ z = - D C , B y + D = 0 ⇔ y = - D B

И проекциями заданной точки М 1 на эти плоскости будут точки с координатами x 1 , y 1 , - D C , x 1 , - D B , z 1 и - D A , y 1 , z 1 .

Продемонстрируем, как был получен этот результат.

В качестве примера определим проекцию точки М 1 (x 1 , y 1 , z 1) на плоскость A x + D = 0 . Остальные случаи – по аналогии.

Заданная плоскость параллельна координатной плоскости O y z и i → = (1 , 0 , 0) является ее нормальным вектором. Этот же вектор служит направляющим вектором прямой, перпендикулярной к плоскости O y z . Тогда параметрические уравнения прямой, проведенной через точку M 1 и перпендикулярной заданной плоскости, будут иметь вид:

x = x 1 + λ y = y 1 z = z 1

Найдем координаты точки пересечения этой прямой и заданной плоскости. Подставим сначала в уравнение А x + D = 0 равенства: x = x 1 + λ , y = y 1 , z = z 1 и получим: A · (x 1 + λ) + D = 0 ⇒ λ = - D A - x 1

Затем вычислим искомые координаты, используя параметрические уравнения прямой при λ = - D A - x 1:

x = x 1 + - D A - x 1 y = y 1 z = z 1 ⇔ x = - D A y = y 1 z = z 1

Т.е., проекцией точки М 1 (x 1 , y 1 , z 1) на плоскость будет являться точка с координатами - D A , y 1 , z 1 .

Пример 2

Необходимо определить координаты проекции точки М 1 (- 6 , 0 , 1 2) на координатную плоскость O x y и на плоскость 2 y - 3 = 0 .

Решение

Координатной плоскости O x y будет соответствовать неполное общее уравнение плоскости z = 0 . Проекция точки М 1 на плоскость z = 0 будет иметь координаты (- 6 , 0 , 0) .

Уравнение плоскости 2 y - 3 = 0 возможно записать как y = 3 2 2 . Теперь просто записать координаты проекции точки M 1 (- 6 , 0 , 1 2) на плоскость y = 3 2 2:

6 , 3 2 2 , 1 2

Ответ: (- 6 , 0 , 0) и - 6 , 3 2 2 , 1 2

Если вы заметили ошибку в тексте, пожалуйста, выделите её и нажмите Ctrl+Enter

Проецирование точки на три плоскости проекций координатного угла начинают с получения ее изображения на плоскости H - горизонтальной плоскости проекций. Для этого через точку А (рис. 4.12, а) проводят проецирующий луч перпендикулярно плоскости H.

На рисунке перпендикуляр к плоскости Н параллелен оси Oz. Точку пересечения луча с плоскостью Н (точку а) выбирают произ­вольно. Отрезок Аа определяет, на каком расстоянии находится точка А от плоскости Н, указывая тем самым однозначно положение точки А на рисунке по отношению к плоскостям проекций. Точка а является прямоугольной проекцией точки А на плоскость Н и называется горизонтальной проекцией точки А (рис. 4.12, а).

Для получения изображения точки А на плоскости V (рис. 4.12,б) через точку А проводят проецирующий луч перпендикулярно фронтальной плоскости проекций V. На рисунке перпендикуляр к плоскости V параллелен оси Оу. На плоскости Н расстояние от точки А до плоскости V изобразится отрезком аа х, параллельным оси Оу и перпендикулярным оси Ох. Если представить себе, что проецирующий луч и его изображение проводят одновременно в направлении плоскости V, то когда изображение луча пересечет ось Ох в точке а х, луч пересечет плоскость V в точке а". Проведя из точки а х в плоскости V перпендикуляр к оси Ох, который является изображением проецирующего луча Аа на плоскости V, в пересечении с проецирующим лучом получают точку а". Точка а" является фронтальной проекцией точки А, т. е. ее изображением на плоскости V.

Изображение точки А на профильной плоскости проекций (рис. 4.12, в) строят с помощью проецирующего луча, перпендикулярного плоскости W. На рисунке перпендикуляр к плоскости W параллелен оси Ох. Проецирующий луч от точки А до плоскости W на плоскости Н изобразится отрезком аа у, параллельным оси Ох и перпендикулярным оси Оу. Из точки Оу параллельно оси Oz и перпендикулярно оси Оу строят изображение проецирующего луча аА и в пересечении с проецирующим лучом получают точку а". Точка а" является профильной проекцией точки А, т. е. изображением точки А на плоскости W.

Точку а" можно построить, проведя от точки а" отрезок а"а z (изображение проецирующего луча Аа" на плоскости V) параллельно оси Ох, а от точки а z - отрезок а"а z параллельно оси Оу до пересечения с проецирующим лучом.

Получив три проекции точки А на плоскостях проекций, координатный угол развертывают в одну плоскость, как показано на рис. 4.11,б, вместе с проекциями точки А и проецирующих лучей, а точку А и проецирующие лучи Аа, Аа" и Аа" убирают. Края совмещенных плоскостей проекций не проводят, а проводят только оси проекций Oz, Оу и Ох, Оу 1 (рис. 4.13).

Анализ ортогонального чертежа точки показывает, что три расстояния - Аа", Аа и Аа" (рис. 4.12, в), характеризующие положение точки А в пространстве, можно определить, отбросив сам объект проецирования - точку А, на развернутом в одну плоскость координатном угле (рис. 4.13). Отрезки а"а z , аа y и Оа х равны Аа" как противоположные стороны соответствующих прямоугольников (рис. 4.12,в и 4.13). Они определяют расстояние, на котором находится точка А от профильной плоскости проекций. Отрезки а"а х, а"а у1 и Оа у равны отрезку Аа, определяют расстояние от точки А до горизонтальной плоскости проекций, отрезки аа х, а"а z и Оа y 1 равны отрезку Аа", определяющему расстояние от точки А до фронтальной плоскости проекций.

Отрезки Оа х, Оа у и Оа z , расположенные на осях проекций, являются графическим выражением размеров координат X, Y и Z точки А. Координаты точки обозначают с индексом соответствующей буквы. Измерив величину этих отрезков, можно определить положение точки в пространстве, т. е. задать координаты точки.

На эпюре отрезки а"а х и аа х располагаются как одна линия, перпендикулярная к оси Ох а отрезки а"а z и a"a z - к оси Оz. Эти лини называются линиями проекционной связи. Они пересекают оси проекций в точках а х и а z соответственно. Линия проекционной связи, соединяющая горизонтальную проекцию точки А с профильной, оказалась «разрезанной» в точке а у.

Две проекции одной и той же точки всегда располагаются на одной линии проекционной связи, перпендикулярной к оси проекций.

Для представления положения точки в пространстве достаточно двух ее проекций и заданного начала координат (точка О) На рис. 4.14, б две проекции точки полностью определяют ее положение в пространстве По этим двум проекциям можно построит профильную проекцию точки А. Поэтому в дальнейшем, если не будет необходимости в профильной проекции, эпюры будут построены на двух плоскостях проекций: V и Н.

Рис. 4.14. Рис. 4.15.

Рассмотрим несколько примеров построения и чтения чертежа точки.

Пример 1. Определение координат точки J заданной на эпюре двумя проекциях (рис. 4.14). Измеряются три отрезка: отрезок Ов Х (координата X), отрезок b Х b (координата Y) и отрезок b Х b" (координата Z). Координаты записывают в следующем п рядке: X, Y и Z, после буквенного обозначения точки, например, В20; 30; 15.

Пример 2 . Построение точки по заданным координатам. Точка С задана координатами С30; 10; 40. На оси Ох (рис. 4.15) находят точку с х, в которой линия проекционной связи пересекает ось проекций. Для этого по оси Ох от начала координат (точка О) откладывают координату X (размер 30) и получают точку с х. Через эту точку перпендикулярно оси Ох проводят линию проекционной связи и от точки вниз откладывают координату У (размер 10), получают точку с - горизонтальную проекцию точки С. Вверх от точки с х по линии проекционной связи откладывают координату Z (размер 40), получают точку с" - фронтальную проекцию точки С.

Пример 3 . Построение профильной проекции точки по заданным проекциям. Заданы проекции точки D - d и d". Через точку О проводят оси проекций Oz, Oy и Оу 1 (рис. 4.16, а). Для построения профильной проекции точки D отточки d" проводят линию проекционной связи, перпендикулярную оси Oz, и продолжают ее вправо за ось Oz. На этой линии будет располагаться профильная проекция точки D. Она будет находиться на таком расстоянии от оси Oz, на каком горизонтальная проекция точки d располагается: от оси Ох, т. е. на расстоянии dd x . Отрезки d z d" и dd x одинаковы, так как определяют одно и то же расстояние - расстояние от точки D до фронтальной плоскости проекций. Это расстояние является координатой У точки D.

Графически отрезок d z d" строят перенесением отрезка dd x с горизонтальной плоскости проекций на профильную. Для этого проводят линию проекционной связи параллельно оси Ох, получают на оси Оу точку d y (рис. 4.16,б). Затем переносят размер отрезка Od y на ось Оу 1 , проведя из точки О дугу радиусом, равным отрезку Od y , до пересечения с осью Оу 1 (рис. 4.16,б), получают точку dy 1 . Эту точку можно построить и как показано на рис. 4.16, в, проведя прямую под углом 45° к оси Оу из точки d y . Из точки d y1 проводят линию проекционной связи параллельно оси Oz и на ней откладывают отрезок, равный отрезку d"d x , получают точку d".

Перенос величины отрезка d x d на профильную плоскость проекций можно осуществить с помощью постоянной прямой чертежа (рис. 4.16, г). В этом случае линию проекционной связи dd y проводят через горизонтальную проекцию точки параллельно оси Оу 1 до пересечения с постоянной прямой, а затем параллельно оси Оу до пересечения с продолжением линии проекционной связи d"d z .

Частные случаи расположения точек относительно плоскостей проекций

Положение точки относительно плоскости проекций определяется соответствующей координатой, т. е. величиной отрезка линии проекционной связи от оси Ох до соответствующей проекции. На рис. 4.17 координата У точки А определяется отрезком аа х - расстояние от точки А до плоскости V. Координата Z точки А определяется отрезком а"а х - расстояние от точки А до плоскости Н. Если одна из координат равна нулю, то точка расположена на плоскости проекций. На рис. 4.17 приведены примеры различного расположения точек относительно плоскостей проекций. Координата Z точки В равна нулю, точка находится в плоскости Н. Ее фронтальная проекция находится на оси Ох и совпадает с точкой b х. Координата У точки С равна нулю, точка располагается на плоскости V, ее горизонтальная проекция с находится на оси Ох и совпадает с точкой с х.

Следовательно, если точка находится на плоскости проекций, то одна из проекций этой точки лежит на оси проекций.

На рис. 4.17 координаты Z и Y точки D равны нулю, следовательно, точка D находится на оси проекций Ох и две ее проекции совпадают.

В ряде случаев, для удобства решения задач необходимо использовать дополнительные плоскости проекций, перпендикулярные к уже имеющимся плоскостям проекций.

Если заданы горизонтальная и фронтальная проекции точки, то профильная проекция определяется по следующему алгоритму.

    Проводим линию проекционной связи перпендикулярную оси Oz .

    На данной линии проекционной связи откладываем отрезок А 1 А X Z А 3 .

Используя данное правило, можно строить проекции точек на дополнительные плоскости проекций (метод замен плоскостей).

Пусть дана точка А(А 2 1 ) и новая дополнительная плоскость проекций П 4 П 1 . Построить А 4 – проекцию точки А на П 4 .

Решение

а) Строим линию пересечения плоскостей П 1 и П 4 = x 1,4 ;

b) Через точку А проводим линию проекционной связи x 1,4 .

c) Строим проекцию А 4 , использую равенство отрезков А 2 А X 4 А X .

    Две проекции точки А 1 и А 4 лежат на одной линии проекционной связи перпендикулярной к оси X 1,4 .

    Расстояние от “новой” проекции точки А 4 до “новой” оси x 1,4 равно расстоянию от “старой” проекции точки А 2 до “старой” оси x 1,2 .

Конкурирующие точки

Конкурирующими точками называют пару точек, лежащих на одном проецирующем луче .

Из двух конкурирующих точек видимой является та точка, которая дальше распологается от плоскости проекций.

Точки А и В называют горизонтально конкурирующими.

Точки С и D называют фронтально конкурирующими.


Ввести дополнительную плоскость так, чтобы точки А и В стали конкурирующими.

План решения:

1 Строим ось x 1,4 A 1 , B 1 ;

2 Строим линию проекционной связи x 1,4 ;

3 На линии проекционной связи откладываем отрезки A x A 2 = A / x A 4 , B x B 2 = B / x B 4 .

Материал для самостоятельного изучения Моделирование объектов 2d-графики в графической системе компас Запуск системы компас и завершение работы

Система КОМПАС-3D-V8запускается аналогично другим программам. Для запуска системы необходимо выбрать меню \Пуск \ Все п рограммы \ АСКОН \ КОМПАС-3 D - V 8 и запустить КОМПАС . Можно выбрать указателем мыши на поле рабочего стола ярлык программы и дважды щелкнуть левой кнопкой мыши. Чтобы открыть документ, необходимо нажать кнопкуОткрыть на панели Стандартная . Чтобы начать новый документ нажмите кнопку Создать на панели Стандартная или выполните команду Файл > Создать и в открывшемся диалоговом окне выберите тип создаваемого документа и нажмите ОК .

Для завершения работы выбрать меню Файл \Выход , комбинацию клавиш Alt-F4 или щелкнуть на кнопке Закрыть.

Основные типы документов графической системы компас

Тип документа, создаваемого в системе КОМПАС, зависит от рода информации, хранящейся в этом документе. Каждому типу документа соответствует расширение имени файла и собственная пиктограмма.

1 Чертеж - основной тип графического документа в КОМПАС. Чертеж содержит графическое изображение изделия в одном или нескольких видах, основную надпись, рамку. Чертеж КОМПАС всегда содержит один лист заданного пользователем формата. Файл чертежа имеет расширение .cdw .

2 Фрагмент - вспомогательный тип графического документа в КОМПАС. Фрагмент отличается от чертежа отсутствием рамки, основной надписи и других объектов оформления конструкторского документа. Во фрагментах хранятся созданные типовые решения для последующего использования в других документах. Файл фрагмента имеет расширение .frw .

3 Текстовый документ (расширение файла . kdw );

4 Спецификация (расширение файла . spw );

5 Сборка (расширение файла . a 3 d );

6 Деталь - Трехмерное моделирование (расширение файла . m 3 d );

Для построения изображений ряда деталей необходимо уметь находить проекции отдельных точек. Например, трудно вычертить вид сверху детали, приведенной на рис. 139, не строя горизонтальных проекций точек А, В, С, D, Е, F и др.

Задача нахождения проекций точек по одной, заданной на поверхности предмета, решается следующим образом. Сначала находят проекции поверхности, на которой расположена точка. Затем, проведя линию связи к проекции, где поверхность изображается линией, находят вторую проекцию точки. Третья проекция лежит на пересечении линий связи.

Рассмотрим пример.

Даны три проекции детали (рис. 140, а). Задана горизонтальная проекция а точки А, лежащей на видимой поверхности. Нужно найти остальные проекции этой точки.

Прежде всего надо провести вспомогательную прямую. Если даны два вида, то место вспомогательной прямой на чертеже выбирают произвольно, правее вида сверху, так чтобы вид слева оказался на нужном расстоянии от главного вида (рис. 141).

Если три вида уже построены (рис. 142, а), то место вспомогательной прямой произвольно выбирать нельзя; нужно найти точку, через которую она пройдет. Для этого достаточно продолжить до взаимного пересечения горизонтальную и профильную проекции оси симметрии и через полученную точку k (рис. 142, б) провести под углом 45° отрезок прямой, который и будет вспомогательной прямой.

Если осей симметрии нет, то продолжают до пересечения в точке k 1 горизонтальную и профильную проекции любой грани, проецирующейся в виде отрезков прямой (рис. 142, б).

Проведя вспомогательную прямую, приступают к построению проекций точки (см. рис. 140, б).

Фронтальная а" и профильная а" проекции точки А должны располагаться на соответствующих проекциях поверхности, которой принадлежит точка А. Находят эти проекции. На рис. 140, б они выделены цветом. Проводят линии связи, как указано стрелками. В местах пересечения линий связи с проекциями поверхности находятся искомые проекции а" и а".

Построение проекций точек В, С, D показано на рис. 140, в линиями связи со стрелками. Заданные проекции точек цветные. Линии связи проводят к той проекции, на которой поверхность изображается в виде линии, а не в виде фигуры. Поэтому сначала находят фронтальную проекцию с" точки С. Профильная проекция с точки С определяется пересечением линий связи.

Если поверхность ни на одной проекции не изображается линией, то для построения проекций точек надо применять вспомогательную плоскость. Например, дана фронтальная проекция d точки А, лежащей на поверхности конуса (рис. 143, а). Через точку параллельно основанию проводят вспомогательную плоскость, которая пересечет конус по окружности; ее фронтальная проекция - отрезок прямой, а горизонтальная - окружность диаметром, равным длине этого отрезка (рис. 143, б). Проведя к этой окружности из точки а" линию связи, получают горизонтальную проекцию а точки А.

Профильную проекцию а" точки А находят обычным способом на пересечении линий связи.

Таким же приемом можно найти проекции точки, лежащей, например, на поверхности пирамиды или шара. При пересечении пирамиды плоскостью, параллельной основанию и проходящей через заданную точку, образуется фигура, подобная основанию. На проекциях этой фигуры лежат проекции заданной точки.

Ответьте на вопросы


1. Под каким углом проводят вспомогательную прямую?

2. Где проводят вспомогательную прямую, если заданы виды спереди и сверху, а надо построить вид слева?

3. Как определить место вспомогательной прямой при наличии трех видов?

4. В чем заключается способ построения проекций точки по одной заданной, если одна из поверхностей предмета изображается линией?

5. Для каких геометрических тел и в каких случаях проекции точки, заданной на их поверхности, находят, пользуясь вспомогательной плоскостью?

Задания к § 20

Упражнение 68


Запишите в рабочей тетради, каким проекциям точек, обозначенных на видах цифрами, соответствуют точки, обозначенные на наглядном изображении буквами в примере, указанном Вам преподавателем (рис. 144, а-г).

Упражнение 69


На рис. 145, а-б буквами обозначено лишь по одной проекции некоторых из вершин. Найдите в примере, указанном Вам преподавателем, остальные проекции этих вершин и обозначьте их буквами. Постройте в одном из примеров недостающие проекции точек, заданных на ребрах предмета (рис. 145, г и д). Выделите цветом проекции ребер, на" которых находятся точки. Задание выполните на прозрачной бумаге, наложив ее на страницу учебника. Перечерчивать рис. 145 не надо.

Упражнение 70


Найдите недостающие проекции точек, заданных одной проекцией на видимых поверхностях предмета (рис. 146). Обозначьте их буквами. Заданные проекции точек выделите цветом. Решить задание Вам поможет наглядное изображение. Задание можно выполнить как в рабочей тетради, так и на прозрачной бумаге, наложив ее на страницу учебника. В последнем случае перечерчивать рис. 146 не надо.

Упражнение 71


В примере, указанном Вам преподавателем, перечертите три вида (рис. 147). Постройте недостающие проекции точек, заданных на видимых поверхностях предмета. Заданные проекции точек выделите цветом. Обозначьте буквами все проекции точек. Для построения проекций точек воспользуйтесь вспомогательной прямой. Выполните технический рисунок и нанесите на нем заданные точки.